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Methods of optimum measurement planning are used to choose an efficient scheme 
for the placement of thermocouples in a study of characteristics of the ther- 
mal state of a thermally protective coating. 

Temperatures are commonly measured by means of thermocouples in tests conducted on ther- 
mally protective coatings to study their thermal state. The temperature field in the coat- 
ing is usually determined by sensors in which the thermocouples are placed different dis- 
tances from the heated surface in accordance with a certain scheme. 

To make thermal tests more informative, it is interesting to explo~e the uSe of data 
from temperature measurements in such sensors to determine other heat-transfer character- 
istics in a coating - such as thermophysical characteristics of the material, characteris- 
tics of thermal loading, etc. Methods based on the solution of inverse heat-conduction prob- 
lems (ICP) [i, 2] can be effectively used to determine these characteristics, the accuracy 
of such methods depending on the scheme of temperature measurement adopted in the experiment 
[3, 4]. 

The optimum temperature measurement schemes may differ for different characteristics, 
with respect to both the number of measurement points and their location in the specimen 
[5, 6]. Thus, the problem arises of selecting an efficient thermocouple placement scheme 
which will ensure that reliable results are obtained and that the entire set of characteris- 
tics being studied will be accurately determined. 

Here, we propose that this problem be solved by taking an approach in which one first 
chooses optimum measurement schemes for the determination of individual characteristics. 
Then, on the basis of comparative analysis of these schemes, a general temperature measure- 
ment scheme is chosen. Particular problems involving measurement planning are solved using 
the methods and algorithms presented in [5-8]. 

We will examine thermal tests whose goal is to determine the nonsteady temperature 
field T(x, ~), 0 ~ x ~ 6, 0 ~ T ~ ~m, and the temperature of the heated surface Tl(z) and 
to refine the thermal conductivity I(T) of a thermally protective coating of glass-fiber 
plastic with an organosilicon binder on the basis of temperature measurements made in a flat 
specimen of thickness 6 (Fig. la) subjected to one-sided heating in a high-enthalpy gas flow. 
It is assumed that determination of the temperature field in the specimen is the most impor- 
tant goal of the test. We will therefore subsequently analyze this problem in greater detail. 
We must use ICP methods to determine the relations TI(~) from the readings of thermocouples 
embedded in the specimen because direct measurement of temperature from thermocouples placed 
on the surface does not always yield satisfactory results. This may be due either to de- 
struction of the thermocouple or to disturbance of its contact with the material by thermal 
and mechanical loads. 

It is assumed that the loss of mass by the specimen during its failure in the tests is 
negligible. Thus, the process of heat transfer in the specimen can be readily described by 
a mathematical model in the form of a boundary-value problem for the heat-conduction equa- 
tion: 

C (T) OT _ 0 ( % (T) OT ) 
O~ Ox ~ ,O<x<a ,  0<~.<~,  (1) 
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Fig. i. Schemes of location of measurement points in the 
specimen: design scheme (a) and optimummeasurement schemes 
(b) to determine the following: i) T(x, ~); 2) Tz(x); 3) 
X(T) at N = i; 4) x(T) at N = 2. 

Fig. Z. Thermophysical characteristics of thematerial: 
i) C(T); 2) %(T) for variant No. i; 3) C(T); 4) ~(T) for 
variant No. 2; 5) results of extrapolation. %, W/(m. deg); 
C, J/(mZ,deg); T, ~ 

~, (T (6, "~)) - -  

T(x, 0)=To(X), 0.<<x<~, 
T (0, '~) = T1 ('~), 0 < z < "~m, 

6T (6, x) =~ c~ (x) [T e ('~) - -  T (6, x)], 0 < x ~< x.~. 
6x 

(2) 

(3) 

(4) 

Furthermore, it is assumed that the temperature dependences of the thermophysical cha=acter- 
istics (TPC) of the material X(T) and C(T) are determined from the solution of th~ ICP [9, 
i0] andcorrespond to curves 1 and 2 in Fig. 2. The specimen heating regime corresponds to 
the change~in temperature TI(T) on the heated surface (curve 1 in Fig. 3). Heat-transfer 
conditions with the parameters ~(T) = 5.81 W~(m2.deg), Te(~) = 15~ are reproduced on the 
internal surface. The initial temperature distribution T0(x) = 15~ The duration of the 
process ~m = 175 sec. The thickness of the specimen 6 = 0.019 m. 

We introduce the measurement scheme or plan: 

= {N; X}, ~6E, X = {X~}[, (5) 

E - -  {(N, X) :N~Nmm,  X~C~; i =  l, N}, 

where X i are space coordinates giving the location of the measurement points on the x axis 
(Fig. la). The set of possihle measurement schemes E is determined by the specific planning 
problem [5, 7, 9]. 

With allowance for the results in [7], the problem of optimizing the scheme of measurez 
ment of ~T e in the determination of the temperature field T(x, ~) is formulated in the fo~m 
of the following extremal problem: 

~ = A r g m i n Z ( ~ r ) ,  ~r = {N, X},  N~Nmin, X--{Xi}[, 

O < X ~ 6 ,  i =  l, N. 

The optimum coordinates of the the rmocouples Xi~, i = I-~-N:, at a fixed number N of 
thermoeouples, are determined from the solution of the extremal problem: 

X* = rain F (N, X), X =  {X,}~, 0 < X, < 6, (6) 

~=2, N - - l ,  X t = O ,  X~, =t~. 
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Fig. 3. Change in specimen surface temperature: i) regime 
No. i; 2) regime No. 2. ~, sec. 

Fig. 4. Temperature distribution in the specimen for the 
moments of time �9 = 12.5 (I); 50 (II), and 175 sec (III): 
i) exact values; 2) values determined from measurements at 
points in the optimum scheme; 3) values determined from mea- 
surements at points in the scheme with a uniform thermocouple 
arrangement; 4) values determined in the presence of the 
"failure" of a thermocouple at the point X2*. X, m. 

The optimum number of thermocouples N* is chosen by successively increasing the value 
of N by unity on the basis of the condition: Q(N, X) ~ g, N = Nmin, Nmi n + i ..... where 
problem (6) is solved for each fixed value of N. We use the following functions as planning 
criteria 

~ "$ [S(x~, R, ~ , ) - - T ( x ~ ,  T~)I ~ 

F (N,)~)  . . . .  : -o .,: =_o . . . . . . . . . . . . . . . . . . . . . . . . .  , ( 7 ) 

~" IT (x~, -q)l ~ 
l=o i=0 

max IS(x j, .,Y, 'D)--  T (x/, ~t)l ] 
0 (N, ,Y) = max J ' 
" / m a x  IT (x ; ,  'q)t ' ( 8 )  

i 

I - - : I , L ,  j : :  l , n ,  

these criteria characterizing the accuracy of approximation of the relation T(x, ~) by the 
splines S(x, X). Here, T(xj, ~) are values of temperature assigned on a two-dimensional 
grid: bnL = (xj, ~s j = ,i~, ~ = i, L, formed by two one-dimensional grids: An: 0 = 
x I < x 2 < ... < x i < ... < x n = 6 (see Fig. la) and AL: 0 = ~l < ~2 < ... < ~s < ... < 
L = ~m; S(x',j X'~s ) are values of __the_spline S(x, X) at the nodes of the grid A n construc- 

ted on the network of nodes X i, i = i, N for each moment of time ~s s = ,~; ~ is a quan- 
tity characterizing the required accuracy in the determination of T(x, ~). In solving the 
planning problem, we assume that the measurements are made continuously over time and with- 
out errors. We use cubic interpolational splines as the functions S(x, X). The minimum 
allowable number of nodes Nmi n = 3 for these splines. 

The theoretical values of temperature T(xj, ~s s = i, L, j = i, n, used in the plan- 
ning as a priori information on the temperature field, are determined from the solution of 
the specimen heating problem (1)-(4). 

The measurement planning problem being examined was solved using the numerical algo- 
rithm proposed in [7] with the following initial data: 6 = 0.019 m, ~m = 175 sec, Nmi n = 3, 

= 0.I. The table of values of temperature was assigned on a uniform space-time grid with 
the number of nodes n = 21, L = 21. As the initial approximation of the measurement scheme 
in the solution of problem (6), we used a uniform location of the measurement points on the 
interval [0, 6]. 
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TABLE i. 
Schemes (Xi*, m) 

Measure- 
ment 
scheme 

"=p 
~T 

Coordinates of Points of Optimum Measurement 

0,0 

0,0 

0,0 

0,00333 

0,00143 

0,00265 

0,00380 

0,00200 

0,00855 

x* 

O, 00548 

0,00760 

x* 

0,00851 

0,01140 

* 
X5 

0,01212 

0,01520 

Character- 
istic dete~ 
mined 

7" (x, ~) 

T (x, x) 

Tl (r) 

k (T) 

~. (7") 

0,01900 

0,01900 

TABLE 2. Values of Characteristics of the Accuracy of De- 
termination of the Temperature Field in the Presence of 
Thermocou ~le "Failures" 

; ' F a i i u r e "  x ~ x ~* .\' ~* x t No " f a i l -  
point - �9 I ure'' 

0,119.10--" 
0,131 0,060 

O,GIS. IO -:~ 
0,050 

0,776.10 -3 
0,077 1 0,037 

0,297.10 -~ 0,120.10 -3 

The results of the calculations showed that the sought optimum scheme gT* is the mea- 
surement scheme with the number of points N* = 6 and the coordinates shown in Table i. For 
comparison, the table also gives the coordinates for the scheme ST p with a uniform thermo- 
couple placement. 

To study the effect of the parameters of the measurement scheme on the accuracy of the 
temperature field determination, we mathematically modeled the experiments and then analyzed 
their results. As the measurement results, we used the theoretical temperatures T(Xi, T), 
i = l, N obtained from the solution of problem (1)-(4). Weexamined optimum and uniform 
thermocouple placement schemes and we evaluated the effect of errors in the thermocouple 
coordinates and "failures" of individual thermocouples on the accuracy of the temperature 
field determination. 

Figure 4 shows results of determination of characteristic temperature profiles T(x) by 
means of spline-approximation for x = 12.5, 50, and 175 sec. The results show that the op- 
timum measurement scheme provides for the prescribed accuracy of temperature field deter- 
mination throughout the ranges of the variables x and [. The accuracy characteristics (7) 
and (8) have the following values: F = 0.12.10 -3 , Q = 0.068. Comparison of the results 
for the schemes ~T* and ~T p shows that use of the optimum measurement points increases the 
accuracy of thetemperature field determination severalfold (for ~T p, F = 0.367.10 -3 , Q = 
0.149). 

Table 2 shows data characterizing the effect of "failures" of thermocouples located at 
interior points (Xi* , i = ~?--~) in the optimum scheme on the accuracy of determination of 
the temperature field. Here, for greater convenience in analyzing the results, we havere- 
placed the characteristic Q by Q. The latter quantity is defined by the relation 

max IS (x j, X,  Tt) - -  T (x j, ~t)l 
(N, X ) - -  i , l  l =  1, L, ] =  1, n. 

max !T (xi, ~t)l ' ' 
/ , l  

The results of the calculations show that failures of thermocouples located at points 
X2* and Xs* have the greatest effect on the accuracy of the temperature field determination. 
Here, a failure at point X2* has a greater effect on Q, while a failure at point Xs* has a 
greater effect on F. 

Figure 4 shows the results of determination of the temperature field in the presence 
of a failure at point X2*. Here, it should be noted that the failures of thermocouples lo- 
cated on the heated (Xl*) or internal (X6*) surfaces of the specimen make it impossible to 
determine the relation T(x, x) with the requisite accuracy on the interval [XI*, X2*] or 
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[Xs*, X6*]. This is because of the loss of information on the temperature field at the cor- 
responding boundaries of the specimen, although such information can be found from the solu- 
tion of an inverse boundary-value problem of heat conduction [i] using measurements of tem- 
perature at interior points of the specimen. 

In analyzing the effect of errors of thermocouple placement on the quality of the mea- 
surements, we used the theoretical values of temperature T(Xi, ~), i = i, 6, at points whose 
coordinates were determined by the relation Xi . . . . . . .  X~--Ax, i== 2. 5, Xj X~, X,~-= ~ X~.'* where ~X 
are the deviations of the coordinates from the optimum values. We took ~X = 0.0002, 0.0005, 
and 0.001 m in the calculations. The results of the calculations, depicted in Table 3 in 
the form of the relation F(SX), show that the deviation of the coordinates from the optimum 
values within the range AX = • m does not lead to a significant increase in the error 
of the temperature field. It should be noted that analysis of the effect of the error of 
thermocouple placement is particularly important for the interior points of the measurement 
scheme, since it is difficult to check their location in the specimen. 

To evaluate the effect of indeterminacies in the thermophysical characteristics of the 
material and the heating regime on measurementplanning, we selected optimum measurement 
schemes with N = 6 for variant No. 2 of TPC values %(T) and C(T) (see curves 3 and 4 in 
Fig. 2) and heating regime No. 2, which corresponds to the relation TI(~) (curve 2 in Fig. 
3). Comparing the coordinates of the measurement schemes shown in Table 4, we find that 
the TPC deviation seen in the calculations (Fig. 2) leads to a substantial change in the 
optimum coordinates. A change in the heating regime (Fig. 3) has considerably less effect 
on the coordinates of the measurement points. 

We used the results in [5, 6] to analyze problems involving the selection of optimum 
temperature measurement schemes ~T-* and $~* in the determination of the relations TI(~) 
and %(T) by the ICP method. The authors of [5, 6] made detailed examinations of the formu- 
lation of similar problems, as well as methods and algorithms for solving them. 

The planning problem is formulated in the form of the following extremal problem: $* = 
Argmax~[M($)], $ �9 E, where the set of possible measurement schemes (5) is determined by 
the relations: E = {(N, X): N e i, 0 ~ X i ~ 6, i = ,~N} in the determination of TI(T) and 
E = {(N, X): N e i, 0 < X i < 6, i = i, N} in the determination of %(T). 

We used the determinant of the normalized Fisher information matrix detM [ii] as the 
planning criterion @[M($)]. The calculations were performed using the application package 
described briefly in [12] and the following initial data: 6 = 0.019 m, Zm = 175 sec, 
T0(x) = 15~ Te(T) = 15~ ~(z) = 5.81 W/(m2'deg). The thermophysical characteristics of 
the specimen material were assumed to correspond to variant No. 1 (see curves 1 and 2 in 
Fig. 2), while the change in the temperature of the heated surface corresponded to regime 
No. 1 (Fig. 3). We took m = 6 as the number of parameters in the representation of the rela- 
tions Tl(~) and X(T) by cubic B-splines, this number ensuring that the relations would be 
described with an error no greater than 10%. The temperature fields and the sensitivity 
functions were calculated on a uniform space-time grid with the number of nodes n x x n~ = 
41 • 41. 

TABLE 3. Values of the Characteristic F in the Presence of 
Errors in the Coordinates of the Thermocouples 

AX, m - -O,OOl  -..0,0005 --0,0002 0 0,0002 0,0005 0,001 

F.10 ~ 0,226 0,133 0,12'2 0,120 0,125 0,156 0,190 

TABLE 4. Coordinates of Measurement Points in the Determin- 
ation of the Temperature Field for Different TPC and lleating 
Regimes (Xi*, m) 

Heat- TPC * x~ 
ing. var iant  x~ x~ x~ x~ x a 
reglme 

0,0 
0,0 

0,0 

0,00255 

0,00163 
0,00180 

0,00548 

0,00580 

0,00552 

O, 00851 
0,00930 

O, 00935 

0,01212 

0,01510 
O, 01504 

O, 01900 

0,01900 
O, 01900 
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Fig. 5. Dependence of the criterion det M on thermocouple 
location: a) in the determination of surface temperature 
(XI* =0, 0 ~ X 2 ~ 0.019 m): i) regime No. i, TPC variant 
No. 2; 2) regime No. i, TPC variant No. i; 3) regime No. 2, 
TPC variant No. i; b) in the determination of thermal con- 
ductivity [I) 0 < X I < 0.019 m, X= = X2*; II) XI = Xl*, 
0 < X 2 < 0.019 m]. 

Table i shows the optimum coordinates of the measurement points to determine Tl(~) with 
N = 2 and X(T) with N = I, 2. Figure 5 shows the dimensionless criterion detM(X) = detM/ 
(detM)ma x as a function of thermocouple location for two variants of TPC and two heating re- 
gimes. 

The results show that location of the thermocouples on the heated surface is optimum 
for the determination of TI(~). The sensitivity of the system decreases as the measurement 
points are located farther from the surface, this decrease leading to a reduction in the ac- 
curacy of the determination of the characteristic. The character of relation det M(X) shows 
that there is a preferred region for thermocouple placement (0 ~ x ~ 0.005 m) around the 
heated surface. This was confirmed by the results of mathematical modeling in which a study 
was made of the dependence of the accuracy of solution of the inverse boundary-value problem 
of heat conduction on the location of temperature sensors [3, 5]. 

In the case where several measurement points are used (N > i) and the first point is 
on the specimen surface, the position of the other points has almost no effect on the sensi- 
tivity of the system at X > 0.005 m. 

Comparison of relations det M(X) for heating regimes Nos. i and 2 shows that the change 
in heating regime examined here does not lead to a change in the coordinates of the optimum 
measurement scheme. There is negligible change in the character of the relations det M(X). 
Indeterminacy in the TPC of the material, corresponding to the difference between variants 
Nos. i and 2 (Fig. 2), also has almost no effect on the planning results. 

Analyzing the effect of possible thermocouple failures, we should note that with the 
use of several measurement points, failure of the first thermocouple (Xl) , located on the 
heated surface, leads to the largest loss of accuracy in the determination of TI(~) in the 
case where the remaining thermocouples are located at the distance X i > 0.005 m. The fail- 
ure of thermocouples installed at points Xi, i = 2, 3, .... has less effect on the accuracy 
of TI(~). If all of the measurement points are located near the heated surface (0 ~ X i 
0.005 m), then the failure of one of the thermocouples will not significantly reduce the 
accuracy of determination of the characteristic in question. 

It can be concluded on the basis of the above analysis that the optimum scheme for de- 
termining TI(~) is the scheme with two points located as closely as possible to the heated 
surface. If design or process limitations prevent the use of this scheme, it would be best 
to locate the first point (XI) as close as possible to the heated surface and to place the 
second point (X=) as close as possible to the first point with allowance for the given lim- 
itations (an example of such a restriction would be that there be a minimum allowable dis- 
tance between thermocouples). If we assume that in our case the restriction has the form 
(X 2 - X l) e i0~, then for diameter of the thermoelectrode # = 0.2 mm, X= ~ 0.002 m. 
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Analysis of the optimum measurement schemes for the determination of I(T) shows that, 
with N = i, there is a rather narrow region near the heated surface (0.0015 m S • S 0.005 m) 
in which placement of the thermocouples will ensure a high degree of accuracy for the solu- 
tion of the ICP. If we successively increase the number of measurement points, we first 
(N = 2) see a sharp increase in the optimum values of the planning criterion detM (by a fac- 
tor of more than 60) and a substantial change in the optimum thermocouple coordinates. A 
further increase in N has almost no effect on the value of the criterion. This indicates 
that an increase in N would be inexpedient from the viewpoint of increasing the accuracy of 
solution of the ICP and that we can restrict ourselves to an optimum scheme containing just 
two measurement points (N* = 2). The results obtained here agree well with the data ob- 
tained in [4, 6, 9] from parametric analysis of the accuracy of an ICP solution. 

Indeterminacy in the TPC of the material and theheating regime has almost no effect 
on the planning results within the difference of the curves in Figs. 2 and 3. The coor- 
dinates of the optimum measurement schemes obtained for heating regimes Nos. i and 2 and 
TPC variants Nos. ! and 2 coincide to within the size of a step (Ax = 0.000475 m) on the 
space coordinate grid. The character of the relations det M(X) changes little. 

Regarding the effect of possible thermocouple failures on the determination of I(T), 
it should be noted that the chosen measurement scheme $i* is most sensitive to a loss of 
information at the point with the coordinate Xz* = 0.00143 m. When the second thermocouple 
(X2* = 0.00855 m) fails, we obtain a measurement scheme with one point whose coordinate is 
displaced relative to the optimum value for N = i. 

Deviations of the coordinates of the thermocouples from their optimum values within 
the region of their preferred location have little effect on the accuracy of the determina- 
tion of Tz(~) and I(T). However, unchecked errors in the determination of the thermocouple 
coordinates may produce unsatisfactory results in the solution of the ICP [i]. 

A comparative anlaysis of optimum measurement schemes $r*, is made in Table 
i and Fig. ib, where the regions where the thermocouples can be placed ate indicated. The 
analysis shows that measurement scheme $T* can be used to reliably determine the entire set 
of heat-transfer characteristics in the coating. Here, Tz(~) should be determined from the 
readings of thermocouples positioned at the points Xz* and X2*, while I(T) should be deter- 
mined from the readings of thermocouples installed at points X2* and X4* in the optimum 
scheme ~T*" 

NOTATION 

T, temperature; x, coordinate; %, time; %m, duration of the process; 6, specimen thick- 
ness; Tz(%), temperature of the heated surface; ~(~), heat-transfer coefficient on the in- 
side surface of the specimen; Te(%), ambient temperature; T0(x), initial temperature dis- 
tribution; I(T), thermal conductivity; C(T), volumetric heat capacity; ~, measurement scheme 
(plan); N, number of measurement points; Nmin, minimum permissible number of measurement 
points; X = {Xi}l N, vector of coordinates of the measurement points; Xi*, i = i, N*, opti- 
mum coordinates of the measurement points; E, set of possible measurement schemes; ~, region 
of location of measurement points; ST*, STz*, 51", optimum measurement schemes to determine 
the relations T(x, %), TI(T), and I(T), respectively; ST p, scheme with a uniform measurement- 
point location; Z($), functional; F, Q, Q, accuracy characteristics; e, required accuracy of 
the determination of T(x, ~); S(x, X), cubic spline; AX, deviation of the coordinates; 
~[M($)], det M, detM, planning criteria; m, number of parameters in the representation of 
the sought relations I(T) and TI(~); AnL, A n , A L, networks of nodes; n, L, number of space 
and time nodes in the networks, respectively. Indices: i, number of measurement point; 
s j, numbers of nodes of space--time network. 
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EFFECT OF DIFFERENT FACTORS ON THE ACCURACY OF THE SOLUTION 

OF A PARAMETRIZED INVERSE PROBLEM OF HEAT CONDUCTION 

O. M. Alifanov and A. V. Nenarokomov UDC 536.24 

Results are presented for a mathematical simulation of the effect of the error 
in approximation of the estimated function, the error in temperature measure- 
ments, and the error in specifying measurements on the accuracy of the solution 
of the parametrized boundary-value inverse problem. 

Methods based on solving boundary-value inverse problems of heat conduction are widely 
used at present in the experimental investigation of processes of heat interaction of a sol- 
id body with the surrounding medium. In these problems we seek thermal boundary conditions 
and restore the temperature field in the body based on results of thermal measurements~ at 
separate internal points. 

In many cases heat transfer in systems being investigated can be described with accur- 
acy sufficient for practical purposes by the one-dimensional nonlinear heat equation 

OT _ 0 ( X ( T ) O T )  
c ( r )  O~ Ox , --~-x ' T = T ( x ,  ~), xE(0, b), TE(xmin ' Cmax]. (1)  

As boundary  c o n d i t i o n s  f o r  (1)  we s p e c i f y  t h e  i n i t i a l  t e m p e r a t u r e  d i s t r i b u t i o n  

T(x, 0) ..... T 0(x), x~[0, b] (2)  

and boundary  c o n d i t i o n s  of  t h e  second k ind  

--L(T) 0-~T (0, ~) .... q(~), ~E(Xmtn, r (3) 
ux 

Or (b (4)  

where u(~) is an unknown function. We assume that we have data on temperature measurements 
for the inner surface of the sample: 

~xp (o, ~) = t (~). (5)  

One of the methods for determining the unknown boundarycondition u(~) for a nonlinear 
heat equation is to solve the inverse problem by means of minimization of the root-mean- 
square dispersion of calculated temperature values at the points of fixing of thermal sen- 
sors Tex p from the experimentally measured values f. Two cases are possible: i) we seek 
a solution in a finite dimensional space of parameters; 2) we solve the optimization prob- 
lem in a functional space. The first approach is realized when the unknown function u(r) 
is approximated by a certain system of basis functions, for example, by piecewise-constant 
functions [i], V-splines [2], etc. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 56, No. 3, pp. 441-446, March, 
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